

Small Modular Reactors

Assessing The Commercial Readiness, Market Pathways and Implementation Opportunities For Industrial Stakeholders

April 2025

The SMR Market Opportunity

Small Modular Reactors are entering the commercial deployment phase in 2025, offering a reliable zero-carbon energy option for electricity generation and industrial heat applications. This report examines leading SMR technologies, their readiness for market, and provides practical guidance for organizations evaluating SMR adoption as part of their long-term energy strategy.

Target Segment Value Propositions

Market Potential & Key Designs

			• Decarbonization: Substitute fossil fuels in hard-to-abate sectors,	
		Industrial	potentially reducing emissions by 50–80%	
\$300B(1)	ISGT	users	 Energy security: Secure reliable, high-temperature heat and 	
Global Market Potential by 2040	CO_2 Reduction by 2025		electricity	
Representing a huge clean energy	If SMRs scale as envisioned (21.0)		• Versatility: Integrate SMRs into smart grids, microgrids, and	
investment opportunity	(~21 Gwe by 2035)(2)		district heating systems	
00		Infrastructure	 Urban Integration: Ideal for data centres and transport hubs 	
80-	+	developers	seeking stable, decarbonized baseload power with a limited	
Design O	ptions of development		spatial footprint	
worldwide, with s	everal nearing		• Grid stability: Enable firm, dispatchable zero-carbon generation,	
deployment readiness		Utilities and	complementing variable renewables and balancing grid volatility	
		power	 Economic efficiency: Potential for multi-SMR fleet efficiencies, 	
			reducing operational costs over time	

(1) N. Katsiotis, "Small Modular Reactors: Redefining Global Energy Security for a Digitalized Future", Strategy international, February 2025. (2) "The NEA Small Modular Reactor (SMR) Strategy", Nuclear Energy Agent, 2025.

SMR Commercial Deployment Roadmap 2025-2035

Commercialization timeline

Non-exhaustive

	Ę	2025	<u>\$</u> 2026	煮 2027-29	2030	
Demon and Lic	stration I encing M	Project Development Iilestones	First Commercial Onshore Deployment	North American and European Advances	US and UK Milestones	Global Integration
• 🗙	energy SU	Ibmitted a	• China's Linglong One SMR	• Canada's <u>Darlington site</u> to	 <u>Tennessee Valley Authority</u> 	• SMRs become
cor	struction	permit	expected to become	deploy BWRX-300 reactors ⁽²⁾	to deploy BWRX-300 reactor	mainstream power
арр	lication to	o the <u>U.S.</u>	operational ⁽¹⁾	• Poland to deploy BWRX-300	for the Clinch River site $^{(4)}$,	source with
Nuc	clear Regu	ulatory		reactors, marking a	and UK to complete four	advanced designs
<u>Cor</u>	nmission	_(NRC)		significant step in European	AP300 SMRs ⁽⁵⁾	entering mainstream
•9 E	U selected	d project		SMR adoption ⁽³⁾		deployment
WO	king grou	ips in 2024				

move ahead in development

(1) "World's first commercial small modular reactor powers up 'brain' in China", CGTN, May 2024. (2) J. Adkins, "Darlington BWRX-300 To Receive Construction Permit 'By End 2024'", NUCNET, July 2023. (3) "OSGE initiates working group within the European Industrial Alliance on SMR", OSGE, July 2024. (4) S. Patel, "TVA Taps Bechtel, Sargent & Lundy, and GE Hitachi for Clinch River SMR Nuclear Project", Powermag, 2023. (5) "UK's First SMR Nuclear Project to Showcase Four Westinghouse AP300 Reactors", Powermag, 2024.

Market Drivers & Strategic Value Propositions

SMRs address critical challenges across various sectors. Their strategic value varies by customer segment, from utilities seeking scalable deployment and enhanced grid integration to energy-intensive industries requiring reliable process heat and on-site power generation.

	Market Drivers	Strategic Value Propositions		
	Decarbonization Imperatives: Governments and industries pursuing net-zero goals need stable, clean electricity sources. SMRs offer reliable, low-carbon alternatives to fossil fuels.	 Utilities: Scalable Deployment: SMRs allow utilities to incrementally add capacity in line with demand, optimizing capital expenditure. Enhanced Grid Integration: SMRs can provide baseload power or load-following capabilities, facilitating the integration of variable renewable energy sources. 		
4	Energy Security Concerns: Fluctuating fuel prices and geopolitical tensions drive interest in domestically deployable energy sources that reduce reliance on imports.	 Energy-Intensive Industries: Reliable Process Heat: SMRs can deliver consistent, high-temperature heat required for industrial processes, reducing reliance on carbon-intensive sources.⁽¹⁾ On-Site Power Generation: Locating SMRs near industrial sites minimizes transmission losses and enhances 		
	Industrial Heat Demand: Many industrial processes require high-temperature	energy security.		
\$\$\$	fossil fuels.	 Remote Communities and Mine Sites: Energy Access: SMRs can provide a stable power supply to remote or off-grid areas where extending traditional power infrastructure is challenging. 		
	Grid Reliability and Capacity Replacement: Aging infrastructure and intermittent renewables create demand for dependable power generation. SMRs can replace	Reduced Fuel Dependency: By decreasing the demand for diesel or other imported fuels, SMRs can lower energy costs and environmental risks associated with fuel transportation.		
	retiring plants and ensure grid stability.	Data Centers and Technology Firms:		
E	Economic Development: SMR projects can stimulate local economies through job creation in manufacturing, construction, and operations.	 High Reliability: SMRs provide consistent and reliable power, crucial for data center operations that require uninterrupted electricity supply. 		
*	Cost Stability: SMRs can provide more predictable energy costs, aiding long-	Desalination: SMRs are adaptable to any desalination method and can be scaled to meet project needs ⁽³⁾ .		
=_\$	term financial planning for businesses and utilities.	Hydrogen production: SMRs generate high-temperature heat for efficient thermochemical hydrogen production ⁽⁴⁾ at a lower cost than conventional methods ⁽⁵⁾ .		

(1) Accelerating new nuclear and small modular reactor deployment, World Economic Forum, November 2024. (2) R. Mammadov, SMRs and data centers: The race for sustainable power solutions, Fuld & Company, 2025. (3) Y. Yoo, "Evaluating the economic and environmental viability of small modular reactor (SMR)-powered desalination technologies against renewable energy systems", Desalination, Elsevier, January 2025. (4) "Small Modular CLIMATE INSIDER Reactors (SMRs) and Hydrogen Production", Small modular reactors, 2024. (5) "Study reveals low cost of nuclear H2", UCL energy, May 2024.

Market Map for SMRs by Climate Insider

Case study: NuScale Power

as a leading contender in the SMR market

Technical Readiness	😭 Market Readiness 🕇	Policy Readiness 🕇	Organizational Readiness
First SMR of its type to receive U.S.	Secured international deployment	Successfully navigated regulatory	Demonstrated organizational maturity
Nuclear Regulatory Commission design	agreements in countries like Ghana and	frameworks to achieve NRC design	through strategic partnerships and a clear
approval, indicating high Technology	Romania ⁽²⁾ . Established partnerships with	approval. Projects have received backing	path to commercialization. Structured
Readiness Level (TRL). Comprehensive	firms like Doosan Enerbility and Sargent &	from U.S. government initiatives,	testing and validation processes indicate
testing programmes have been conducted	Lundy to support manufacturing and	facilitating policy support for deployment.	proactive risk mitigation.
to validate safety and performance $^{(1)}$	deployment.		

(1) S. Singer, "NuScale Power's small modular reactor design is first in US to get NRC approval", Utility Dive, January 2023. (2) S. Writer, "Ghana secures NuScale SMR agreement", Nuclear engineering international, September 2024.

Commercial Readiness Framework

CLIMATE INSIDER

<u>Climate Insider</u>'s Four-Dimensional Readiness Framework provides a comprehensive methodology for assessing SMR commercial viability. These dimensions are interconnected, creating feedback loops that impact overall readiness, e.g., technical advancements enhance market confidence, while market demand informs R&D priorities and design choices.

Technical Readiness Assessment of leading SMR designs

SMR Design	Reactor Type	TRL	Safety Demo	Performance	Design Maturity	Fuel Qualification	Component Testing	Modeling
NuScale VOYGR ⁽¹⁾	Integral PWR	8-9	Extensive	Proven scalability	Fully engineered	Standard LEU	Completed	Simulation validated
BWRX-300 ⁽²⁾	BWR	8	Simplified passive	High efficiency	Step 2 of UK GDA	Standard BWR	Commercially adapted	Under review
Xe-100 ⁽³⁾	HTGR	7-8	Robust under stress	High-temp. output	NRC Construction Permit filed	TRISO fuel licensed path	Advanced development	Advanced modeling
IMSR ⁽⁴⁾	MSR	6-7	Inherent safety	Strong thermal output	Vendor design review complete	Molten salt under review	Early-stage	Limited validation
Natrium ⁽⁵⁾	Sodium Fast	7	Advanced passive safety	Hybrid thermal and grid flexibility	Construction underway	Under development	Progressing	Simulation progressing
Rolls-Royce SMR ⁽⁶⁾	PWR	7-8	Factory-built, safety-focused	Flexible, modular output	Step 2 GDA completed	Step 2 GDA Standard LEU completed planned		Simulation ongoing

NuScale leads with NRC certification and extensive validation, while GE Hitachi follows leveraging existing BWR technology. Hightemperature designs like X-energy's Xe-100 offer industrial applications but face additional fuel qualification challenges. Advanced concepts like TerraPower's Natrium show promise but require further development.

(1)"The ideal energy solution for AI", NuScale, 2025. (2) "BWRX-300", Hitachi, 2025. (3) X-Energy website. (4) "Integral Molten Salt Reactor: Carbon-free, Low-cost, High-impact. Flexible and Resilient", Terrestrial energy, 2024. (5) "The Plant", TerraPower, 2025. (6) "Our vision", Rolls-Royce SMR, 2025.

Technical readiness is evaluated across 7 key criteria: Technology Readiness Level (TRL), Safety Demonstration Maturity, Performance Metrics Validation, Design Maturity & Engineering, Fuel Qualification Status, Component Demonstration, and Simulation & Modeling Validation. Each criterion is scored on a 1-5 scale, with higher scores indicating greater readiness for commercial deployment.

Deployment Archetypes & Pathways

SMR Deployment Archetypes

SMR Deployment Archetype	Typical Capacity Range (MW)	Capital Cost Range	Construction Timeline	Regulatory Complexity	Key Requirements for Success	Examples of Companies
Grid-Scale (Utilities)	300–1000 MW	\$5,000– 10,000/kW (FOAK)	8-10 years	High	Transmission access, modularity, regulatory maturity	GE Hitachi BWRX- 300 (Darlington, Canada), TVA Clinch River Site (US), Rolls-Royce SMR (UK)
Industrial Co- Generation	50–300 MW	\$4,000– 8,000/kW	5–9 years	Medium-High integration complexity, industrial safety licensing	Heat/electricity integration, industrial partnerships	<u>Xe-100</u> at Dow (US), <u>IMSR</u> for Alberta oil sands (Canada)
Remote/ Distributed Power	1–50 MW	\$100M- \$300M+ per unit	5–7 years	Medium-High	Refuelling intervals, autonomous ops, logistics	<u>DOD Project Pele</u> (US), <u>Microreactor</u> <u>pilots (</u> Canada)
District Heating / Desalination	100–300 MWt	\$3,000– 6,000/kW	6-10 years	Medium	Urban infrastructure integration, seasonal demand management	<u>ACP100</u> (China), European studies (Poland, Finland)

Design Decision Pathways

Capacity Need & Scalability Modular SMRs allow phased buildout

2

Cost & Financing

LCOE analysis and financing options

3

Regulatory Environment Jurisdictional support influences selection

4

Site Suitability

Brownfield sites simplify permitting and logistics

5

Partnership Models

Strategic partnerships reduce FOAK risk

Policy Readiness Assessment

Regulatory Framework Maturity

The extent to which a country has a transparent and streamlined regulatory system for nuclear technologies-especially SMRs:

- Existence of an established licensing body ٠ (e.g., CNSC in Canada, NRC in the U.S.) with published procedures for SMR licensing.
- · Technology-neutral frameworks that can accommodate different SMR types (LWR, MSR, HTGR, etc.).
- Pre-licensing tools like Canada's Vendor Design Review (VDR), allowing early-stage regulatory engagement.
- Use of existing environmental assessments (e.g., Darlington's reused EA) to reduce project duplication and accelerate approval.

Financial Incentives

Government mechanisms that reduce capital expenditure or improve project bankability through direct or indirect financial support:

- Production tax credits (PTCs) or investment tax credits (ITCs) - e.g., U.S. IRA's 45U nuclear PTC.
- Loan guarantees e.g., Canada Infrastructure Bank's \$970M loan to Darlington BWRX-300.
- Clean energy grants or cost-sharing programs - e.g., U.S. DOE's ARDP, Canada's Strategic Innovation Fund (SIF).
- Carbon pricing Implicit incentives for lowemission generation

Stakeholder Engagement

The degree to which community members, Indigenous groups, environmental NGOs, labour unions, and other stakeholders are included in SMR project development:

- Transparent, early engagement-sharing timelines, risks, and safety information.
- Indigenous inclusion—consultation, partnership models, procurement preferences, co-ownership opportunities.
- Public hearings and participatory processes mandated by regulators or voluntarily adopted by developers.
- Environmental justice considerations particularly relevant in siting near vulnerable or historically underserved communities.

Policy Readiness Assessment: Canada's landscape

Regulatory Framework Maturity

Canada's robust system includes the <u>Vendor Design</u> <u>Review (VDR) pre-licensing process, streamlined</u> environmental assessments, and international regulatory collaboration. The <u>CNSC's</u> adaptive approach accelerates approval timelines while maintaining safety standards.

- Early engagement between regulators and developers reduces licensing delays.
- International coordination enhances efficiency and confidence.
- Adaptive, transparent processes support both innovation and safety.

Financial Incentives

Key economic instruments and supports include the Strategic Innovation Fund and Canada Infrastructure Bank's \$970M loan to the Darlington BWRX-300 project⁽¹⁾.

- Public financing can de-risk FOAK projects.
- Strategic funds help unlock private investment and accelerate timelines.
- Long-term price signals or offtake mechanisms are still needed for NOAK scaling.

Stakeholder Engagement

Canada emphasizes transparent, inclusive practices including public consultation, Indigenous s partnerships like the Bruce Power co-ownership with Saugeen Ojibway Nation, and ongoing discussions with remote communities about microreactor deployment.

- Co-ownership models (e.g., with Indigenous partners) build long-term trust.
- Early consultation strengthens social license and reduces opposition.
- Tailored outreach is essential for remote and underserved communities.

The Darlington BWRX-300 project⁽²⁾ serves as a case study in effective policy implementation. With site preparation underway and operation targeted for 2029, it demonstrates Canada's engineer-procure-construct model and will serve as a reference plant for future deployments. While Canada offers one of the most supportive SMR policy environments globally, opportunities remain to enhance economic policy tools and accelerate fuel supply readiness.

(1) "CIB commits \$970 million towards Canada's first Small Modular Reactor", CIB, October 2022. (2) "The Darlington New Nuclear Project", OPG, 2023.

Examples

Lessons

Market Readiness

Supply chain maturity	Manufacturing Facilities Rolls-Royce plans to establish 3 UK factories for mass-producing SMR modules ⁽¹⁾ . NuScale partners with Doosan and BWXT for North American module components manufacturing ⁽²⁾ .		Fuel Supply HALEU is a bottleneck, with alone US needing 40+ MT by 2030 ⁽³⁾ . DOE programs include Centrus enrichment demo and \$700M in funding. Urenco has announced plans to produce HALEU in the UK ⁽⁴⁾ . TRISO-X, X-energy subsidiary, will open the first advanced nuclear fuel facility in North America in 2025 ⁽⁵⁾		Construction & Engineering Workforce Western construction lags China, South Korea and the UAE ⁽⁶⁾ . The U.S. and Canada are expanding nuclear engineering programs, trade union training, and operator certification. Indiana's study also highlighted workforce development as a critical priority ⁽⁷⁾ .	
Infrastructure & Commercial Readiness	Grid Integration SMRs require grid stability studies. Co-location with renewables creates integration complexity.	Module Transportation Given that bottlenecks exist in bridge load limits, port handling, and customs clearance, logistical planning should be enhanced in early design stages.		Site Preparation & Construction Brownfield sites, such as retired coal plants, may streamline permitting and infrastructure requirements, though construction timelines still vary widely based on foundation type, seismic preparation, and local permitting processes.		Workforce Availability Skilled labour shortages persist in regions without active nuclear infrastructure, with deployment archetypes—such as remote microreactors and large grid-scale SMRs— demanding different trades and skill sets.
Commercial ecosystem development	Contract Evolution PPAs, take-or-pay agreements, and BOO models emerging ⁽⁸⁾⁽⁹⁾ . US DOE exploring standardized contracts.	Insurance & I Nuclear insuranc require adaptatio while civil liability Anderson in the U clearer guidelines	Liability e pools are available but n for small modular units, regimes—such as Price- J.S.—vary, necessitating s for co-located users.	Capital markets Investors view SMRs as FOAK provide the second public-private financing Infrastructure funds and green brankets are emerging as potent e.g., <u>Canada's Green Bond Fram</u> supporting nuclear development	rojects, ond ial sources, <u>ework</u> 	Industry Standards Development <u>ASME, CSA</u> , and <u>IEC</u> are working to codify standards for SMR-specific designs, while regulatory harmonization through organizations like the IAEA and SMR Vendor Forums will support global scalability.

(1) "Three UK sites in running to host first Rolls-Royce SMR factory", World nuclear news, December 2022. (2) "Doosan starts forging components for NuScale SMR", World nuclear news, May 2023. (3) "U.S. Department of Energy Seeks Input on Creation of HALEU Availability Program", Office of Nuclear Energy, December 2021. (4) "Advanced fuels announcement", Urenco, May 2024. (5) "X-energy marks start of construction at US fuel plant", World nuclear news, October 2022. (6) Z. Beck et al, "What's Holding Back Nuclear in the West?", BCG, March 2025. (7) "SMR TECHNOLOGY AND ITS IMPACT FOR INDIANA", Indiana office of energy development, November 2024. (8) J. weibezahn, "Fission for funds: The financing of nuclear power plants". Elsevier, December 2024. (9) "Contracting and Ownership Approaches for New Nuclear Power Plants", IAEA, 2024.

 \uparrow High (3 pts) \Rightarrow Moderate (2 pts) \downarrow Low (1 pt)

Organizational Readiness

Organizational readiness requires strong technology developers with financial and technical stability and cross-sector collaboration, alongside prepared end-users with nuclear project management experience.

Technology Developer Capabilities

Funding adequacy, technical expertise, manufacturing partnerships, project delivery track record and IP positioning

End-User Readiness

Project management, technical capacity, stakeholder management, risk systems and executive alignment

Partnership Ecosystem Development

Strategic alliances across supply chain, knowledge transfer, IP & risk sharing, cross-sector collaboration and

JV structures

Comparative assessment of organizational readiness for 6 leading SMR developers

Company	Funding Adequacy	Technical Team & Regulatory Exp.	Manufacturing Partnerships	Project Mgmt Track Record	Ecosystem & Stakeholder Engmt.	Score
GE Hitachi (BWRX- 300)	Backed by GE & Hitachi; progressing in Canada, Poland, and the UK	Deep BWR lineage; NRC and CNSC engagement; UK GDA Step 2 underway	Established supply chain; partnerships with BWXT, Hitachi, others	Selected by OPG; Darlington FOAK project advancing	Strong global partnerships; GDA public consultations; stakeholder trust 🏠	15
Terra Power (Natrium)	\$2B DOE cost- share; significant private support (\$1B)	Advanced sodium fast reactor knowledge; NRC p	EPC partnership with Bechtel; contracts for simulator, monitoring systems awarded	Wyoming FOAK broke ground 2024; other contracts progressing	Strong federal and industry support; global alliances forming	15
X-energy (Xe-100)	\$700M Series C-1 (including Amazon) DOE support	HTGR experience; TRISO fuel licensin underway; NRC application filed	TRISO-X plant in Oak Ridge; manufacturing partnership with Dow	Texas FOAK with Dow submitted to ᅌ NRC in 2025	Strong industrial partners (Dow); federal and energy stakeholder ties	13
NuScale Power	Raised \$1.4B, but recent losses; canceled UAMPS order	First and only NRC- certified SMR; dee regulatory familiarity	Partners include BWXT, Doosan, Samsung; mature fabrication capab.	Idaho FOAK in development; momentum slowed after project loss	U.S. agency support; limited new commercial traction	12
Rolls- Royce SMR	£405M total raised; seeking deployment deals abroad	UK GDA Step 2 complete; experienced PWR ᅌ engineering team	Three UK factories planned; supply deal with Siemens Ener	No FOAK, but detailed plans; growing interest ir Czech Republic and UK	Strong UK government backing; exploring international partnerships	11
Terrestrial Energy (IMSR)	Strategic Innovation Fund; going public via SPAC (~\$28 goal)	CNSC Vendor Design Review complete; molten salt reacto expertise	MOU with Schneider Electric for energy solutions	No FOAK; development-stage project; commercializ. plan by 2030s	Canadian MOUs; early global interest; pre-deployment stage	9

Financing Mechanisms

Comparative analysis of financing mechanisms

Financing Approach	Key Cost Attributes	Examples
Traditional Project Finance	High cost of capital, private sector bears risk	Rolls-Royce SMR exploring private investment models including pension funds and sovereign wealth funds
Public- Private Partnerships Shared risk model; requires clear contractual structure		GE Hitachi – TVA Collaboration (US) – Though TVA is a public utility, it's entering into a structured agreement with GEH and the DOE
Regulated Asset Base	Allows cost recovery during construction; consumers share risk ⁽¹⁾	UK government approved the RAB model in 2021 for large-scale nuclear; Rolls-Royce SMR is lobbying for its application to SMRs
Government- Backed Loans	Reduces developer risk; US DOE LPO supports advanced reactors	X-energy (US) – Received a \$1.2B award from DOE under the Advanced Reactor Demonstration Program (ARDP), and is also exploring DOE LPO mechanisms for project financing.
Tax Credit- Enhanced Financing	Monetize credits by selling them to investors to reduce capital costs	TerraPower (US) – To leverage the 45U PTC for nuclear and 48E ITC for storage; confirmed intent to use transferable tax credits, enabling third- party investors to purchase credits

SMR cost reduction pathway: FOAK to NOAK (\$/kW)⁽⁴⁾

~10,000	~3,800	~6,200	1,500	200 50	400 ~3,600
Recent FOAK projects	Recent reductions driven by the best practices	Best practices FOAK	Yard/cooling/ EPC installation	Nuclear Turbine island island equipment equipment	Owner's NOAK Cost
Cost reductions by individual cost category	30-40%		40-50% 40-50%	20-30% 10-20%	30-40% ~40% Total cost reduction
Examples	Better project scoping, fewer redesigns during construction		Standardized site layouts, smaller footprint "Learning by doing" on repeat builds	Standardization & better procurement; Incremental gains from scale/supply chain	Faster timelines, reduced risk premiums
Key drivers of cost reduction	Investment in improved pre-		Learning by doing	Supply chain development	Drive by reductions in
	project planning		Standardization	Modularization	other cost categories
			Build time reduction		

(1) "The Regulatory Asset Base and Project Finance Models", International Transport Forum, OECD, 2016. (2) "Zero-Emission Nuclear Power Production Credit", IRS, 2022. (3) "Guide to the Federal Investment Tax Credit for Commercial Solar Photovoltaics", US Department of Energy, January 2020. (4) "Pathways to Commercial Liftoff: Advanced Nuclear", US Department of Energy, March 2023.

Strategic partnership metrics

Building Effective SMR Partnerships

Strategic alliances across the SMR value chain

Vendor-EPC Alliances	GE Hitachi – SNC Lavalin – Aecon Collaborative approach combining reactor technology, regulatory knowledge, and construction capability for Darlington ⁽¹⁾ .	Jacobs – Rolls-Royce Technical program de development support Kingdom's naval nucle program ⁽²⁾ .	livery and reactor for the United ear propulsion	NuScale Power – Fluor Corporation - Samsung C&T Collaboration to advance the global deployment of NuScale's SMR technology, with Fluor as the lead EPC partner and Samsung C&T as an investor and business collaborator ⁽³⁾ .		High-performing partnerships typically exhibit:		
Customer- Vendor Partnerships	X-energy – Dow Chemical X-energy - Amazon Joint development of Xe-100 demonstration plant for industrial steam and electricity at Dow's UCC1 Seadrift Operations ⁽⁴⁾ . X-energy - Amazon Investment to deploy up to 5 GW of SMR capacity in the USA by 2039, supporting Amazon's carbon-free energy commitment ⁽⁵⁾ .					 Clear Value Flows: Allocation of capital, IP rights, and operating revenue by phase. Risk Sharing: Defined thresholds for 		
Supply Chain Integration initiatives	Siemens Energy – Rolls-Royce Siemens Energy to supply key conventional island equipment for Rolls-Royce's SMR program, including steam turbines and generators ⁽⁶⁾ .		USNC – Framatome Joint venture to manufacture TRISO and FCM® fuel for USNC's Micro-Modular [™] Reactor and other advanced designs ⁽⁷⁾ .			 cost overruns, schedule changes, and regulatory outcomes. Governance Models: Joint steering committees, shared reporting 		
Cross-border Collaborations	U.SCanada-UK Memorandum of Cooperation signed by the U.S., Canada, and the UK to collaborate on technical reviews and regulatory efficiency for advanced reactor and SMR technologies ⁽⁸⁾ .					structures, escalation protocols.		

(1) "GE Hitachi Signs Contract for the First North American Small Modular Reactor", GE Vernova, January 2023. (2) "Jacobs Awarded \$132 Million UK Ministry of Defence Research and Technology Contract", Jacobs, January 2025. (3) "NuScale Power secures investment and support from Samsung C&T corporation for global SMR deployment, NuScale, July 2021. (4) G. Bock, "Dow and X-Energy Submit Construction Permit Application for Advanced Nuclear Project in Texas", Climate Insider, March 2025. (5) "Amazon invests in X-energy, unveils SMR project plans", World nuclear news, October 2024. (6) "Siemens Energy to supply Rolls-Royce with equipment for small nuclear reactors", Reuters, February 2025. (7) "USNC Framatome Joint Venture", USNC, November 2023. (8) "Transatlantic collaboration on SMR regulation expanded", World nuclear news, March 2024.

powered by RESONANCE

Risk Assessment & Mitigation Strategies

	\$	Technical Risk		Market Risk	Ē	Policy Risk	ł	Organizational Risk	,	Systemic Risk
Examples	•	FOAK component challenges such as supply chain and regulatory delays HALEU fuel qualification bottlenecks New fuel waste stream (e.g., molten salt)	•	Cost overruns can significantly impact project feasibility, especially for FOAK deployments Demand uncertainty Competition from long- duration storage or green hydrogen	•	Licensing delays can hinder deployment timelines, particularly for reactor designs requiring new safety standards Insufficient incentives Reputational spillover from unrelated nuclear events	•	Workforce availability Weak vendor project delivery history may lead to face execution challenges, Inefficient collaboration among stakeholders can lead to misaligned goals and project inefficiencies	•	Fuel, market, and regulatory interactions can create cascading challenges Supply chain strain from uncoordinated orders Delays causing knock-on effects across multiple projects
Mitigation approaches	•	Funding for FOAK projects (e.g., <u>The Generation III+</u> <u>SMR Program</u>) Parallel supply chain development (e.g., <u>HALEU</u> <u>availability program</u>)	•	Multi-unit procurement models (e.g., UK SMR fleet) Secured power purchase agreements (e.g., Dow & X- Energy's <u>agreement</u>)	•	Policy alignment (e.g., <u>Canada-Japan MOC</u>) Strategic innovation funds (e.g., <u>Canada's SIF</u>) Public education and engagement programs	•	EPC/vendor partnerships (e.g., <u>GE Hitachi-SNC</u> <u>Lavalin-Aecon</u>) Joint procurement consortia, capacity- building programs (e.g., simulators, trades training)	•	Scenario planning & modelling tools Risk-sharing contracts (e.g., Build-Own-Operate) Diversified deployment pathways (e.g., microreactors, industrial heat, remote power)

Roadmap to SMR Commercialization: 2025 – 2035

	Industry Milestones	Stakeholder Actions	Decision Criteria	Leading Indicators
2025-2026: Foundation phase	 Final design certifications for BWRX-300 and Xe-100 Construction starts in Canada and the US HALEU supply chain initiatives launched 	 Utilities: Select technologies for FOAK projects targeting 2030-32 Industrial Users: Complete feasibility studies for applications Governments: Finalize frameworks and financial support mechanisms Investors: Enter early for equity 	 Design certification with no major modifications Construction permits secured HALEU production capacity confirmed Financing secured for FOAK projects 	 Regulatory review cycle times. Vendor design reviews completed. Site preparation activities confirmed
2027-2028: Demonstra- tion phase	 First SMR operations at Darlington Performance data published and verified Second-wave procurement initiated 	 Industrial Users: Assess heat demand and retrofit pathways Infrastructure Developers: Initiate site assessments and community engagement Governments: Shape siting rules and demand aggregation pools 	 First unit operational performance meets 90% of targets Construction timeframe and budget within 15% of projections Operational safety metrics achieved Second wave financing structures Heat application validation 	 Construction milestone for first units Component manufacturing quality metrics achieved Industrial heat user commitments Supply chain delivery performance Grid integration studies completed
2029-2030: Scaling phase	 Fleet orders initiated in North America/Europe Standardized licensing introduced globally First industrial heat applications deployed 	 Utilities & Investors: Finalize investment decisions post-demonstration and initiate EPC negotiations Industrial Users: Finalize co-location agreements and facility preparations Infrastructure Developers: Secure permits for districts 	 FOAK economics validated within 20% of projections Supply chain capacity sufficient for 3-5x deployment rate Standardized component fabrication Regulatory efficiency improved by >30% Heat application contracts signed 	 Order volume growth rate Component manufacturing lead times LCOE trajectory by design Countries with SMR-ready regulation Average licensing timeline reduction Qualified personnel pipeline
2031-2035: Expansion phase	 Cost reductions achieved via modular deployment International exports accelerate SMRs integrated with renewables/hydrogen production Remote power applications commercialized 	 Utilities: Implement fleet deployment strategies Industrial Users: Scale SMR heat integration across facilities Infrastructure Developers: Deploy district energy systems Expand supply chain partnerships 	 NOAK cost reductions by 30% Factory fabrication achieving quality and schedule targets Global deployment exceeding 10 GW installed capacity Proven and independently financed deployment models 	 Manufacturing facility utilization rates Learning rate percentage (cost reduction per doubling) LCOE competitive position Host community acceptance metrics Integration with clean energy systems Global harmonization of standards

SMR Deployment Pathways to 2050

Scenario analysis: deployment pathways to 2050

Scenario		Drivers	Outcome	Leading Indicators		
1	High Deployment (>100 GW)	 Fleet procurement models adopted Broad industrial uptake across sectors Harmonized international regulations Successful FOAK projects within budget 	 Global cost parity with renewables by 2035 SMRs become standard component in energy mix Multiple vendors with standardized designs 	 >3 successful FOAK projects by 2028 Multiple countries adopting fleet procurement by 2030 LCOE reduction of >10% between first and third units Cross-border regulatory harmonization agreements signed Industrial users forming buying consortia Supply chain investment exceeding \$10B by 2030 		
2	Base Case (50-75 GW)	 Regional adoption with gradual policy support Limited fuel constraints resolved by 2030 Selective industrial applications Mixed FOAK project performance 	 Steady rollout in 10-15 countries Selective competitiveness in specific markets Consolidation around 3-5 leading designs 	 1-2 successful FOAK projects by 2028 HALEU supply meeting 70-80% of demand by 2030 LCOE declining but remaining 10-20% above alternatives 5-7 countries with active construction by 2032 Industrial heat applications limited to 2-3 sectors Selective policy support in key markets 		
3	Limited Deployment (<25 GW)	 Policy delays and inconsistent support Low public acceptance FOAK cost overruns >30% Cheaper alternatives dominate Fuel supply constraints persist 	 Niche applications only Minimal private sector interest Limited to countries with strong nuclear legacy 	 Major FOAK projects delayed >2 years Cost overruns exceeding 30% on initial projects Limited progress on regulatory harmonization HALEU supply meeting <50% of demand by 2030 Declining investor interest after 2028 Policy support fragmented or reversed 		

Strategic Recommendations

Stakeholder	Timeframe	Action Steps	Decision Points	Alternative Pathways
	Immediate Actions (2025-2026)	 Complete heat demand assessment Identify SMR sites Form task force Engage vendors for feasibility studies 	 Q4 2025: Go/No-Go on feasibility studies Heat demand thresholds determine investment or consortium approach 	 Secure long-term contracts Pilot smaller SMRs with expansion options Join industry consortium
Industrial Manufacturers	Medium-Term (2027-2029)	 Secure site permits Form joint ventures Develop financing structure Begin workforce training 	 Q2 2027: Technology selection decision Q1 2028: Investment structure decision 	 Phased integration of applications Multi-vendor strategy Wait-and-see approach
	Long-Term (2030+)	 Scale deployments Integrate hydrogen production Establish excellence centres 	 Q3 2030: Scale-up based on FOAK results Q1 2032: Integration decision 	 Transition to NOAK designs Combine SMRs with renewables and storage
	Immediate Actions (2025-2026)	 Map energy loads Identify brownfield sites Engage municipal stakeholders Initiate regulatory discussions 	 Q3 2025: Site selection framework Q1 2026: Market model decision 	 Mixed-use developments Target coal plant conversions Hybrid projects with renewables
Infrastructure Developers	Medium-Term (2027-2029)	 Begin permitting process Secure anchor customers Develop district energy systems 	 Q4 2027: Project structure decision Q2 2028: Financing approach decision 	 Modular deployment strategy Energy hub model Expand services around energy availability
	Long-Term (2030+)	 Operate multi-user hubs Scale district networks Enable public-private partnerships 	 Q1 2031: Expansion decision Q3 2033: Business model evolution 	 Merchant operations model Phase in advanced designs Expand internationally
	Immediate Actions (2025-2026)	 Define fleet procurement strategy Assess leading technologies Engage regulators 	 Q2 2025: Technology category decision Q4 2025: Regulatory strategy decision 	 Incremental deployment approach Multiple technology strategy
Utilities	Medium-Term (2027-2029)	 Deploy FOAK project Establish governance teams Plan fleet standardization 	Q3 2027: Fleet size decision based on demand and carbon targets	Acquire operational projects rather than developing from scratch
	Long-Term (2030+)	Standardize contracts and procurement across fleet	Q2 2030: Fleet standardization decision	Transition to Gen IV designs as they mature

