

Green Hydrogen

Strategic Frameworks for Technology Selection, Infrastructure Integration, and Partnership Optimization Across the Hydrogen Value Chain Through 2035

May 2025

Green Hydrogen: A clean alternative

Green hydrogen's pivotal role in global decarbonization

- Planned green and blue hydrogen production through 2030 now exceeds 26 million metric tons annually – a 4x increase since 2020.
- Global demand for clean hydrogen could reach ~660 million metric tons per year by 2050.
- Clean hydrogen production costs are expected to decline rapidly over the next decade.
- At a production cost of ~\$2/kg, clean hydrogen could become cost competitive across many applications.
- In 2050, hydrogen could contribute more than 20 percent of annual global emissions reductions.

Source: McKinsey & Company, "Five charts on hydrogen's role in a net-zero future", 2022.

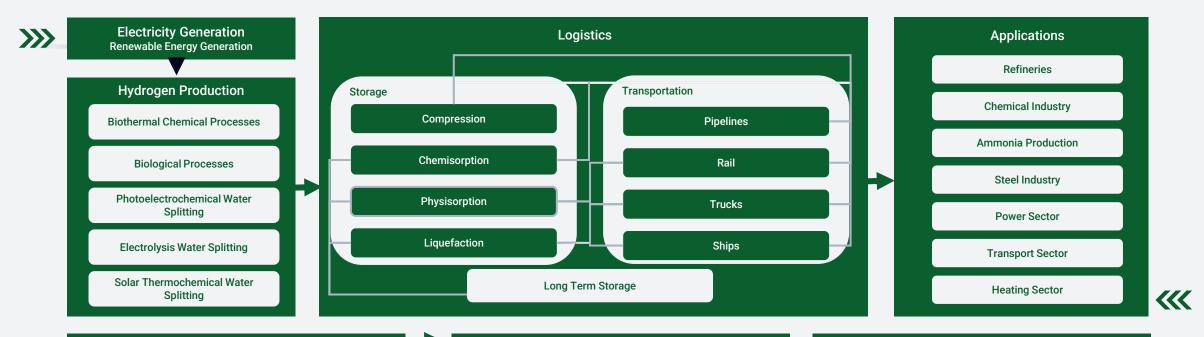
Market Drivers

While each stage of the green hydrogen value chain - production, storage, transportation, end-use, and system integration - faces its own unique challenges and drivers, there are five overarching forces shaping progress across the entire ecosystem

Technological Advancements Across the Value Chain

Policy Support and Regulatory Standardization Emerging Infrastructure and

Declining Renewable Energy


Costs

System Integration

Corporate Commitments and Sector-Specific Adoption

Understanding the Hydrogen Infrastructure Value Chain

>>>>

Major Energy Players

 For all applications, demand for green hydrogen increases demand for renewable and low-carbon energy

Industrial Manufacturing & Heavy Industry

 The physical form and logistics of hydrogen delivery will determine the complexity and design of on-site operations in heavy industry.

Infrastructure in buildings & Utilities

 The adoption of hydrogen technologies will disrupt standardized HVAC systems in buildings-

Electricity Generation – Hydrogen Production

 Electricity is the largest input cost for hydrogen production; the price, availability, and reliability of renewable electricity ultimately determine whether green hydrogen is costcompetitive.

Hydrogen Production - Logistics

 Methods to prepare hydrogen for storage and/or transport are energy-intensive and capital-heavy.

Logistics – Applications

Critical Interfaces-Economics

 Inefficiencies in storage, transportation, and preparation methods can increase delivered hydrogen costs by 30– 50%.

Electricity Generation – Hydrogen Production

 Proximity to renewable energy sources-reduces transmission losses and grid reliance dependence.

Hydrogen Production – Logistics

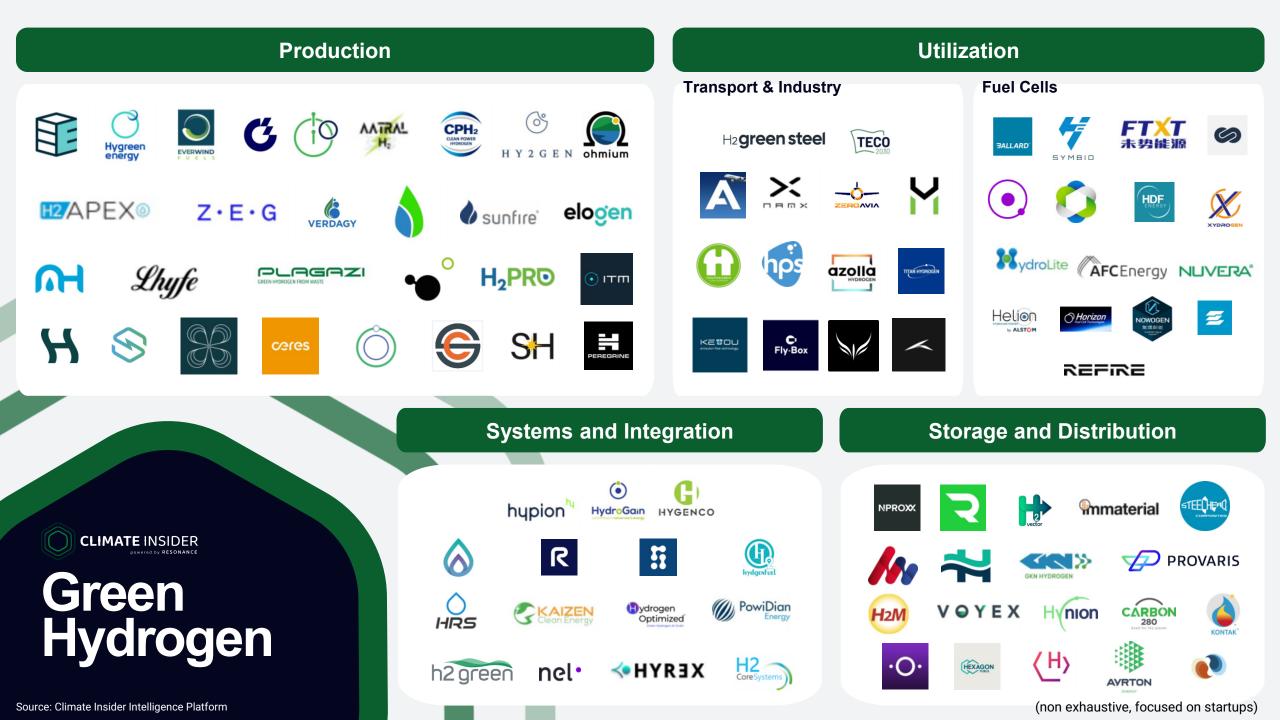
 Connecting hydrogen production to storage and transportation networks requires investment in preparation units and storage tanks

Logistics – Applications

Infrastructure

 Different applications require hydrogen in specific states or formats, each with transport challenges and infrastructure demands.

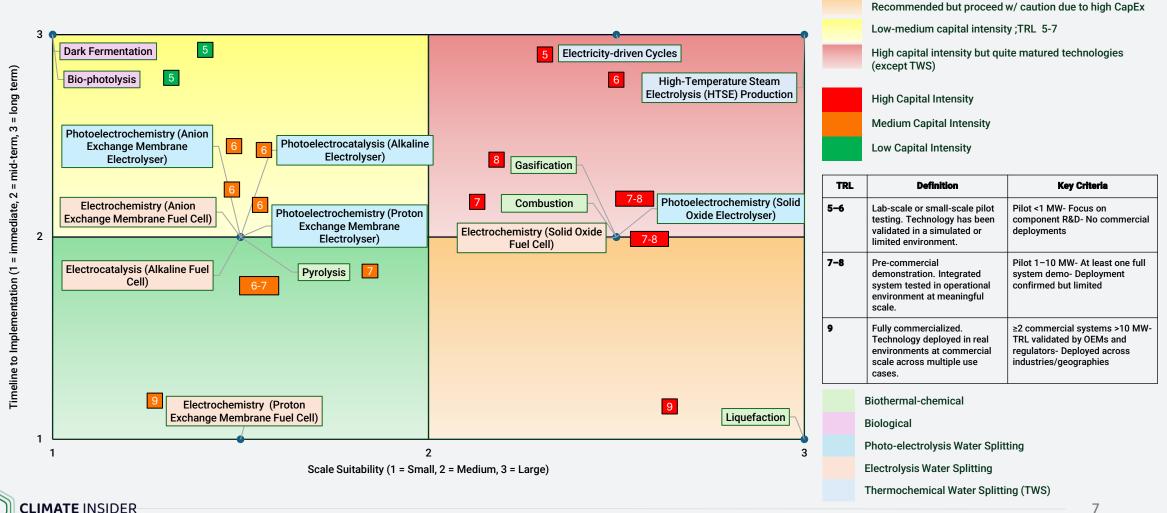
CP Highlight


Project Development

Green hydrogen, provides a zero-carbon, highefficiency energy carrier that enables the decarbonization of hard-to-electrify sectors such as long-haul freight, steel, cement, and petrochemicals. Compared to other decarbonization pathways such as carbon capture or electrification, green hydrogen allows for direct replacement of fossil fuels in industrial heat, transportation fuels, and feedstocks without legacy infrastructure dependency.

Green hydrogen strengthens grid resilience by acting as both a clean fuel and a flexible energy storage medium. Electrification-only strategies can worsen grid congestion and need transmission upgrades. Green hydrogen provides demand flexibility and load balancing: supporting non-wire alternatives, optimizes grid and reduces dependency on centralized infrastructure - lowering complexity for hard-toelectrify applications.

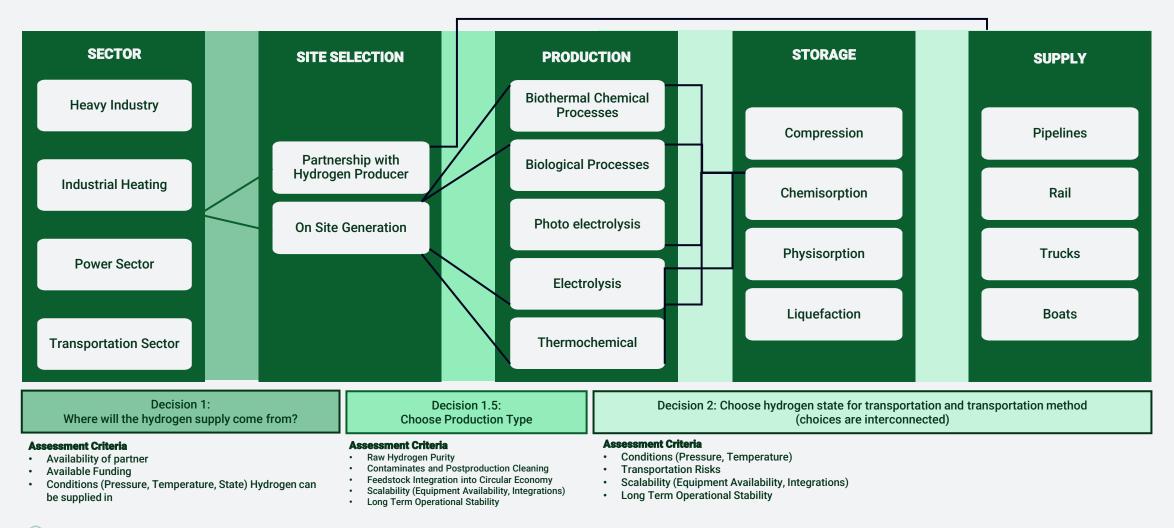
	Company	any Technology Specification		Impact	
	Shell	Electrolyzer (Germany)	10 MW electrolyzer in refinery	15-20% CO₂ reduction vs. 2016 levels	
	First Hydrogen	Green H₂ production + vehicle assembly	50 MW green H₂ plant + 25,000 vehicle/yr capacity	800k tonnes GHG reduction annually in Québec	
S	World Energy G2	Wind-powered $H_2 \rightarrow$ Green ammonia	4 GW onshore wind, 280k t/y $H_{2} \rightarrow$ 1.6M t/y green ammonia	850k tonnes GHG offset annually	
0	TES Canada	H₂ for mobility + synthetic gas	Project Mauricie: H_2 split – 1/3 for FCEVs, 2/3 for RNG	800k tonnes GHG reduction (3% of Québec total)	
IRVING	Irving Oil	PEM electrolyzer blending in SMR	5 MW PEM electrolyzer installed at refinery	30% GHG reduction by 2030	
Dow Linde	Dow + Linde	Clean H_2 + CCS for ethylene cracker	$2B+ H_2$ facility with CCS at Fort Saskatchewan, 2M+ tons CO ₂ captured	World's first net-zero ethylene cracker	
Q,	Hydro-Québec	Grid storage using green hydrogen	Stores excess hydropower as H ₂ ; reuses when demand increases	Boosts energy availability & reliability (figures not disclosed)	
Ø	Enbridge Gas	Power-to-gas blending	2.5 MW facility, \sim 3,600 households, up to 2% H ₂ blend	Grid stability + reduced emissions	
ATCO	ATCO + Suncor	CCS + low-carbon H_2	CCS-based H₂ for refining; ATCO handles infra, Suncor operates production	>2M tonnes CO₂ reduction annually in Alberta	



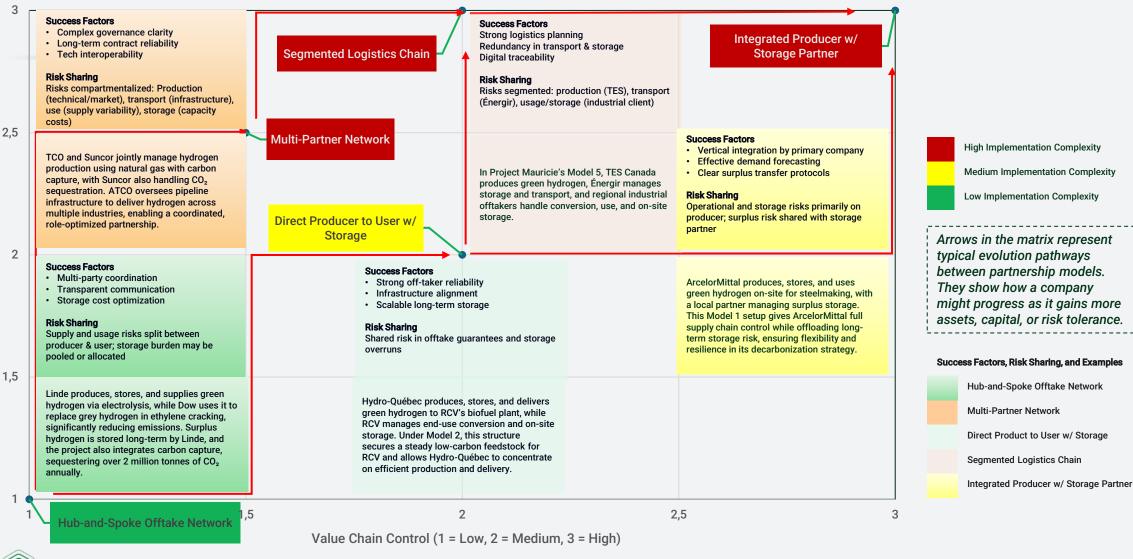
Hydrogen Production Technologies – Strategic Summary

Technology Pathway	Readiness & Efficiency	Key Advantages	Primary Challenges	Use Cases	Example Deployment
1. Biothermal-Chemical (Gasification, Pyrolysis, Combustion, Liquefaction)	 Early to Mid-Stage High Temp: 250-1500°C Pressure: 10-30 MPa 	 Renewable waste feedstock Potential for carbon neutrality Value-added byproducts (e.g. biochar, syngas) 	 Expensive, complex equipment Logistics-sensitive Inconsistent product quality 	 Waste-to-energy Industrial CHP Distributed conversion 	SGH2 Energy Global (plasma gasification), Air Liquide (bio-H ₂ + liquefaction)
2. Biological Processes (Dark Fermentation, Bio- photolysis)	 Very Early Stage Low Temp: 30–50°C 	 Zero-emission potential Low energy input Versatile organic feedstocks 	 Low H₂ yield Scale-up difficulty Bioreactor complexity 	 Municipal/agricultural waste conversion Algae/biohybrid systems 	Alps Ecoscience (biohythane via waste streams)
3. Photoelectrolysis (Various photoelectrochemical cells)	 Early-StageEff. ~60-90% (tech-dependent) 	 High purity H₂ Solar-ready integration Low emissions 	 Durability issues Cost & scalability Sensitive to environmental conditions 	 Off-grid, solar-aligned production Portable and modular setups 	None listed (R&D level)
4. Electrolysis (Water Splitting) (PEM, Alkaline, Solid Oxide, AEM)	 Mid to Commercial Eff. ~40-60% (up to 85%) Durability: 20k-90k hours 	 Mature supply chains High efficiency Modular, decentralized options 	 Thermal & water management Durability risks Material cost 	 Grid-connected or off-grid H₂ Industrial and mobility sectors 	Hydro-Québec Green H ₂ Plant Sunfire – MultiPLHY project
5. Thermochemical Water Splitting (HTSE, Electrolytic Cycles)	 Early-stage Demo Temp: 500-2000°C 	 Integrates with nuclear/solar High theoretical efficiency Continuous H₂ production 	 Material degradation Complex thermal recovery Requires high-temp heat 	 Large-scale industrial use Hybrid with nuclear/solar Power-to-X (P2X) 	NTPC – India (HTSE pilot with power plant integration)

From Lab to Launch: Visualizing Readiness Across **Hydrogen Pathways** Recommended for deployment



Greenfield Hydrogen Infrastructure Conversion Roadmap


Phase 1: Strategic Site Framing (2025–2026)	Phase 2: Infrastructure Stack Design (2026–2027)	Phase 3: Permitting & Funding Gate (2027–2029)	Phase 4: Phased Build & Commissioning (2030–2032)	Phase 5: Market Activation & Backbone Integration (2033–2035)
Identify optimal project sites with access to low-cost renewables, water, and end-use demand. Ensure locational synergies that reduce logistics and interconnection risk.	Define the full hydrogen production-to- delivery system architecture based on project scale, energy profile, and cost targets. Ensure technical compatibility and flexibility from the outset.	Secure critical regulatory approvals, close financing gaps, and confirm offtake to move toward Final Investment Decision (FID). De-risk early-stage exposure before construction.	Execute pilot-scale builds and validate real-world performance across electrolyzer, storage, and transport systems. Establish reliability, safety, and integration readiness.	Activate supply routes to mobility hubs, industrial users, or export markets. Enable long-term scalability via pipeline, port, or backbone infrastructure connectivity.
Activity - GIS + techno-economic site modeling - Engage offtakers for early MoUs - Analyze interconnection and grid support options	Activity - Tech selection (PEM, SOEC, AEM, etc.) based on scale and timeline - Integrate water treatment, compression, storage tech - Simulate system-level energy efficiency	Activity - Secure EIA + hydrogen-specific permits - Submit grant proposals and investor decks - Finalize EPC bid packages and risk insurance	Activity - Construct initial MW-scale pilot plant - Test end-to-end output, storage, and dispatch - Calibrate controls, safety, and contingency plans	Activity - Enable dispatch to industrial clusters, mobility hubs, or ports - Build or link into regional H ₂ backbone - Certify export-grade purity & compliance
Go/No-Go Trigger - No competitive land access or zoning approvals - RE intermittency too high for stable H ₂ output - Anchor demand too fragmented or uncertain	Go/No-Go Trigger - Electrolyzer supply lead time exceeds build schedule - Water source inadequate or costly to treat - No viable downstream transport model	Go/No-Go Trigger - Delays in major permits or stakeholder opposition - Funding gap exceeds de-risking buffer - No offtake lock-in to support FID	Go/No-Go Trigger - Interoperability failures across subsystems - Safety violations during testing - Initial CapEx overrun >15%	Go/No-Go Trigger - No domestic uptake at viable price point - Pipeline connection delayed or infeasible - Regulatory blocks on cross-border sales
Alternative Pathway - Co-locate near existing industrial zones - Use hybrid solar/wind for better supply profile - Shift to export-only model (e.g., ammonia)	Alternative Pathway - Use distributed H ₂ clusters instead of centralized hubs - Deploy modular electrolyzer skids - Switch to LOHC or ammonia transport formats	Alternative Pathway - Phase project into 10–30 MW tranches - Switch to BOO or PPP model with infra partners - Seek export pre-orders to guarantee demand	Alternative Pathway - Lock in backup OEMs and tech suppliers - Segment operations into manageable zones - Re-design with simplified process layout	Alternative Pathway - Create "H ₂ islands" for industrial use only - Shift to trucking or ammonia export - Enable storage buffering until infra catches up

Practical Hydrogen Solutions Integration Roadmap

Green Hydrogen Partnership Models: Strategic Fit & Evolution Pathways

CLIMATE INSIDER

vered by RESONANCI

High)

Contact us!

We'd love to hear your feedback or questions

<u>https://climateinsider.com/climate-market-data/</u> <u>hello@</u>resonance.holdings

